Survival RAG

[Type]: AI/RAG System
[Language]: Python
[Focus]: Knowledge Retrieval

> Overview

A Retrieval-Augmented Generation (RAG) system specialized in survival and emergency preparedness knowledge. This project demonstrates advanced RAG implementation techniques, combining vector databases with LLMs to provide accurate, context-aware information retrieval.

The system showcases how domain-specific knowledge can be effectively organized and retrieved using modern AI techniques, making it an excellent example of practical RAG architecture for specialized applications.

> RAG Architecture

┌─────────────────┐     ┌──────────────────┐     ┌─────────────────┐
│  Document       │────▶│  Embedding       │────▶│  Vector         │
│  Ingestion      │     │  Generation      │     │  Database       │
└─────────────────┘     └──────────────────┘     └─────────────────┘
                                                           │
                                                           ▼
┌─────────────────┐     ┌──────────────────┐     ┌─────────────────┐
│  User Query     │────▶│  Semantic        │────▶│  Retrieved      │
│                 │     │  Search          │     │  Context        │
└─────────────────┘     └──────────────────┘     └─────────────────┘
                                                           │
                                                           ▼
                                                  ┌─────────────────┐
                                                  │  LLM Response   │
                                                  │  Generation     │
                                                  └─────────────────┘
                

> Key Features

Vector Search

Semantic similarity search using state-of-the-art embedding models

Context Augmentation

Intelligent context injection for improved response accuracy

Knowledge Curation

Structured ingestion pipeline for domain-specific content

Response Synthesis

Advanced prompt engineering for coherent, factual outputs

> Technical Implementation

The RAG system implements a sophisticated pipeline that combines vector similarity search with LLM generation to provide accurate, context-aware responses. Core technical components include:

The architecture emphasizes modularity, allowing independent optimization of each component. The system includes comprehensive logging and metrics collection for monitoring retrieval quality and response accuracy, enabling continuous improvement through data-driven insights.

> Technology Stack

Python 3.11+
LangChain
ChromaDB
Sentence Transformers
OpenAI API
FAISS

> AI Engineering Insights

This RAG implementation demonstrates several advanced concepts:

View on GitHub Back to Projects